Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
The Korean Journal of Parasitology ; : 583-595, 2015.
Article in English | WPRIM | ID: wpr-160904

ABSTRACT

DEAD/DExH-box RNA helicases catalyze the folding and remodeling of RNA molecules in prokaryotic and eukaryotic cells, as well as in many viruses. They are characterized by the presence of the helicase domain with conserved motifs that are essential for ATP binding and hydrolysis, RNA interaction, and unwinding activities. Large families of DEAD/DExH-box proteins have been described in different organisms, and their role in all molecular processes involving RNA, from transcriptional regulation to mRNA decay, have been described. This review aims to summarize the current knowledge about DEAD/DExH-box proteins in selected protozoan and nematode parasites of medical importance worldwide, such as Plasmodium falciparum, Leishmania spp., Trypanosoma spp., Giardia lamblia, Entamoeba histolytica, and Brugia malayi. We discuss the functional characterization of several proteins in an attempt to understand better the molecular mechanisms involving RNA in these pathogens. The current data also highlight that DEAD/DExH-box RNA helicases might represent feasible drug targets due to their vital role in parasite growth and development.


Subject(s)
Animals , Eukaryota/enzymology , Gene Expression Regulation , Parasites/enzymology , RNA/metabolism , RNA Helicases/metabolism
2.
Braz. j. microbiol ; 43(3): 1192-1205, July-Sept. 2012. ilus, graf, tab
Article in English | LILACS | ID: lil-656690

ABSTRACT

Baffled shake flask cultivation of Aurantiochytrium sp. B-072 was carried out at in a glucose-monosodium glutamate mineral medium at different C/N-ratios (30-165) with glucose fixed at 90 g/L. With increasing C/N-ratio, a modest increase in lipid content (60 to 73 % w/w) was observed whereas fat-free biomass decreased but overall biomass showed little variation. FA-profiles were not affected to a large extent by C/N-ratio and absolute docosahexaenoic (DHA)-levels fell in narrow range (5-6 g/L). However at C/N > 64 a rapid decrease in lipid synthetic rate and/or incomplete glucose utilization occurred. Glucose and FA-fluxes based on fat-free biomass peaked at a C/N ratio of 56. This condition was chosen for calculation of the redox balance (NAD(P)H) and energy (ATP) requirement and to estimate the in vivo P/O ratio during the main period of fatty acid biosynthesis. Several models with different routes for NADPH, acetyl-CoA formation and re-oxidation of OAA formed via ATP-citrate lyase were considered as these influence the redox- and energy balance. As an example, using a commonly shown scheme whereby NADPH is supplied by a cytosolic "transhydrogenase cycle" (pyruvate-OAA-malate-pyruvate) and OAA formed by ATP-citrate lyase is recycled via import into the mitochondria as malate, the calculated NADPH-requirement amounted to 5.5 with an ATP-demand of 10.5 mmol/(g fat-free biomass x h) and an in vivo P/O-ratio (not including non-growth associated maintenance) of 1.6. The lowest ATP requirement is found when acetyl-CoA would be transported directly from the mitochondria to the cytosol by carnitine acetyltransferase. Assay of some enzymes critical for NADPH supply indicates that activity of glucose-6-phosphate dehydrogenase, the first enzyme in the HMP pathway, is far insufficient for the required NADPH-flux and malic enzyme must be a major source. Activity of the latter (ca. 300 mU/mg protein) far exceeds that in oleaginous fungi and yeast.


Subject(s)
Fatty Acids/analysis , Biomass , Docosahexaenoic Acids , Eukaryota/enzymology , Glucose/biosynthesis , Lipids/analysis , Oxidation/analysis , Enzyme Activation , Methods
3.
Medicina (B.Aires) ; 67(6): 747-757, nov.-dic. 2007. ilus, graf
Article in Spanish | LILACS | ID: lil-633501

ABSTRACT

La utilización intensiva de fármacos antiparasitarios es la causa principal de la aparición de microorganismos parásitos multirresistentes en las regiones del planeta donde son precisamente endémicos. Los agentes etiológicos de las denominadas enfermedades tropicales -malaria, criptosporiodiosis, enfermedad del sueño, enfermedad de Chagas o los distintos tipos de leishmaniosis- son protozoos unicelulares sobre los que no se ha desarrollado en la actualidad ninguna vacuna eficaz y cuyo tratamiento se basa en medidas sanitarias preventivas y en el uso de medicamentos. La quimioterapia antiparasitaria actual es cara, no está ausente de efectos adversos y no supone beneficios a las empresas que la comercializan, por lo que la inversión en I & D es marginal comparada con la llevada a cabo para otros procesos patológicos de menor relevancia médica. La identificación de las ADN topoisomerasas como dianas farmacológicas se basa en los excelentes resultados obtenidos en los ensayos clínicos llevados a cabo con los derivados de la camptotecina en la terapia antitumoral. Las importantes diferencias estructurales entre las ADN topoisomerasas de tipo I de tripanosomas y leishmanias con respecto a sus homólogas de mamífero ha abierto un nuevo campo de investigación que combina las técnicas de biología molecular con la cristalización de proteínas para poder diseñar nuevos fármacos dirigidos específicamente a su inhibición. Revisamos aquí las características de estas nuevas dianas farmacológicas, así como los compuestos que en el momento están siendo utilizados para su inhibición en los agentes parasitarios que causan las principales enfermedades tropicales.


The intensive use of antiparasitic drugs is the main cause of the emergence of multiresistant parasite strains on those regions where these parasites are endemic. The aetiological agents of the so-called tropical diseases viz. malaria, cryptosporidiosis, sleeping sickness, Chagas disease or leishmaniasis, among others, are unicellular protozoan parasites with no immune-prophylactic treatment and where the chemotherapeutical treatment is still under controversy. At present, the chemotherapeutic approach to these diseases is expensive, has side or toxic effects and it does not provide economic profits to the Pharmaceuticals which then have no or scarce enthusiasm in R & D investments in this field. The identification of type I DNAtopoisomerases as promising drug targets is based on the excellent results obtained with camptothecin derivatives in anticancer therapy. The recent finding of significant structural differences between human type I DNAtopoisomerase and their counterparts in trypanosomatids has open a new field in drug discovery, the aim is to find structural insights to be targeted by new drugs. This review is an update of DNA-topoisomerases as potential chemotherapeutic targets against the most important protozoan agents of medical interest.


Subject(s)
Animals , Humans , Antineoplastic Agents/pharmacology , Eukaryota/enzymology , Topoisomerase I Inhibitors , Antineoplastic Agents/chemistry , DNA Repair , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , Drug Design , Eukaryota/genetics , Leishmania/enzymology , Leishmania/genetics , Neoplasms/drug therapy , Protozoan Infections/parasitology , Structure-Activity Relationship , Trypanosoma/enzymology , Trypanosoma/genetics
4.
International Journal of Environmental Science and Technology. 2005; 2 (3): 201-206
in English | IMEMR | ID: emr-70960

ABSTRACT

Every organism has different potential to accumulate NO3- from the environment. Nitrate reduction processes are perhaps most significant in maintaining water quality by alteration of nitrate to nitrite. A comparative study between the nitrate reductase NR activity of green and blue green algae in presence of heavy metals is being conducted to present a situation where nitrate reductase process may be affected in presence of heavy metals. Metals interacted negatively with the nitrate reductase activity of a blue green alga, Anacystis nidulans and green algae, Chlorella vulgaris in both free and immobilized state. The activity was more repressed in C. vulgaris in presence of Ni compared to Zn and Cd. However, Cd was more toxic to NR activity in A. nidulans [free state]. Metal dependent variation between free and immobilized cells were found to be significant [P< 0.01] however, the concentration dependent pattern in the activity between free and immobilized state was non significant in both the test organisms. C.vulgaris is more efficient in conversion of nitrate to nitrite compared to A.nidulans in presence of heavy metals


Subject(s)
Nitrate Reductases/physiology , Eukaryota/metabolism , Eukaryota/enzymology , Chlorella/enzymology , Metals, Heavy/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL